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Abstract. Various methods for treating nonhomogeneous Dirichlet boundary 
con-

ditions for the p-version of the finite element method are presented. These

methods are theoretically and comrutationally analyzed. Numerical experimen-

tations are given. They clearly illustrate the importance of the right treat-

ment of the nonhomogeneous Dirichlet boundary conditions.
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1. Introduction.

The classical finite element method approximates the solution of the

problem by plecewise polynomials (usually of degree p = 1,2). Accuracy is

then achieved by decreasing the elements size h, which is why this method is

often called the h-version. The h-version has been thoroughly investigated

both theoretically and computationally and many codes based on this approach

are available.

In recent years, attention has been focused on two new finite element

developments, the p-version when the mesh is fixed with accuracy being

achieved by increasing the degree p of the elements either uniformly or

selectively, and the h-p-version which increases the degree of elements and

modifies the mesh simultaneously. The first theoretical papers addressing

these new versions appeared in 1981 ([11 and [2]) and discussed basic approxi-

mation and convergence results for these methods. (See also [3], [4] for the

state of art of these methods.) These methods are related to the spectral

methods which are now used in computational fluid mechanics (see eg. [5]).

In structural mechanics the equations to be solved are of elliptic type

and the input data are piecewise analytic. This piecewise analyticity has

profound impact on the regularity of the solution. The solution is--piecewise

analytic with singular behavior in a priori known areas such as neighborhoods

of corners, see [6]. It can be shown ([7], [8]) that for this type of probiem

the y-version hp a rate of convergence (in the energy norm) which is twice

that of the h-version (with respect to the number of the degrees of fre-dom)

when a quasiuniform mesh is used. The hp-version then leads to vn exponen-

tial rate of convergence. For more, see [9], [10].

The p and h-p versions have been implemented in the commercial code

PROBE (Noetic Technology, Inc., St. Louis) which is used in the Industries.



The program STRIPE (Aeronautical Research Institute, Sweden) is also based on

the p and h-p version.

In [11), [121. [13), we discussed a class of theoretical questions

related to the implementation of essential boundary conditions in the frame-

work of the p and h-p versions. The main aspect is to approximate the

nonhomogeneous boundary conditions so that they will be in the trace spaces of

the finite element subspaces. This approximation can be made in various ways.

We introduce in this paper a one parametric family of approximations based on

the expansion in Jacobi polynomials which naturally lead to the employment of

the theory of weighted Sobolev spaces. We analyze this family theoretically

and perform various comparative numerical studies.

Section 2 of the paper introduces the weighted spaces, and interpolation

results between families of these spaces. It also contains a family of pro-

jection operators based on Jacobi polynomials which are analyzed both theore-

tically and computationally in section 3. These results are applied to the

p-version of the finite element for solving problems with nonhomogeneous

Dirichlet boundary data in two dimensions. The results of numerical experi-

ments are also presented in this section.
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2. The function spaces.

2.1. Notation.

Let Q c R2 be a polygonal domain with straight or curved sides. We

M
assume that an = r = U rI where Fi, I = 1,2,..., M is an analytic simple

i=1

arc connecting the vertices Ai 1 and AI (A0 = AM. By ri we denote

ri - (Ai-uA) and by wi the interior angle of A,, 0 < i < 2n. The

notation scheme is shown in Figure 2.1. Further we denote I = (-1,1) c R

A5~A3

W4 W r

Figure 2.1. Scheme of the domain and the notation.

2.2. The spaces.

0OQ) k,) ok,)
We will consider the usual Sobolev spaces L2 (Q) = HH(), H(2), H(1),

k > 0 integer. The norm and seminorm will be denoted by Ii'1,(,)l and

-{( respectively. We will also consider the spaces with k fractional.

The definition then is the usual one based on the K-method, see eg. [14],

[15].
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On I we will consider a family of weighted spaces. For s ? 0 an

integer and Av real we define the norm 1IIl' by

(2.1a) 1lull 2  = [( - s-u + (1-x2)-Uu2]dx.'wS(A' V) 1-iS

For 0 < s = [s] +{s} where [s] is an integer and 0 < {s} < 1 we define

(2. 1b)

Hlull 2 =1 Ul112 +I 1 (1-x2) /u(Sx-(l-y2) Yu(S(Y)] xd

(x)-i-y) u Cyu
hlhWSC ) = i iws(A Ip) '-1'- (1- x U x Y 1+21s

where u (s) ds . For s = 0 we use P = v and
dx s

11U12 =11 - 2 )-1j 2 d

(instead 2J(1-x2 )-Wu2 dx)

Let further Cw, respectively C , denote the set of functions with all
0.

derivatives on I = [-1,1], respectively functions with all derivatives and

compact support in I.

We define now WS(j,z) and rs(p,v) as the completion of the set

4u 6 C 00l ul C <}, resp. of the set C The spaces wS(gv) are
WS() < 00

Hilbert spaces. WS(o,o) is the usual Sobolev space with fractional deriva-

tives, I.e., WS(o,0) = HS(I). We will consider in the sequel various spaces

and their equivalency. The equivalency will be denoted by =. The weighted

spaces WS(g,v) have been studied in a general context in [14]. Let us

mention now somc of their properties which will be used later.

Theorem 2.1.

(a) Let {s} * 1/2. Then all spaces wS(m,L) with -m < < 2s +A

4



are equivalent. If in addition pL+2s P 1+2k, k = 0,...,[s] - i, then

these spaces are equal to WS(P,P+2s).

(b) If v a p+2s then wS(,L.+2s) = wS(,P+2s).

(c) If s = 0 then O0 (p,v) = W 0 ($,P) for any - < v <..

For the proof, see Theorem 3.2.6 and Remark 6-3.2.6 of [14]. 0

Let (H1H2)@,2  be the interpolated space by the K-method. For more

see [14], [15]. Then it is well known that for 0 < {s} < 1, s 0,

(2.2a) His] =(H H[] l

and for {s} * 1/2

(2.2b) H = [) ,}

By Hs we denoted the standard Sobolev spaces HS(Q) or HS(1). We have

then

H[s]+{s}(1 =[S] +{S}oo)

H (lis) = W llf)(0,0),

respectively

o[s]+{s}(i o [s]+{s}(0o

H (1) = W (0,0)

In the case s} 1/2 the Interpolated norm H (I) has the form

2ull 2 =H 1I u ii 2  + I1 (1-x2) - 1/2 u ( s) L1

H~l+/ IH [l12L2 M

This norm Is usually denoted by H 1/2I). We will consider only the interpo-

lated norms in this paper. Hence O[s]+1/2(o,0) not equivalent with

H[S]+1/2(i).

In the sequel we will write (,)e instead of (')e,2

It is possible to interpolate between the spaces WSI(P i' ), i = 1,2,
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and Wr ' v i), I = 1,2.

Theorem 2.2. Let s 0 O,0, s 2I S 2, 1  i +2s i ' I = 1,2, 0 < 0 < 1,

and

a) (11i-P 1)s 2 = /2- 2 )sit

b) s = (1-e)s 1 +es2, s 0 an integer,

c) v = (1-)U 1 +6u 2,

d) - -v '2 2 (in the case that s I  0 and s 2 > 0, one

/A- V 12- Pu2
sets p 1 =v 1  and uses - - ) .2

S S 2

Then

(2.3) (W 1 , llv 1 ), W 2(p2 ,v2 ))6 =wSc,).

For the proof, see Theorem 3.4.2 of [14). 0

We will now apply Theorems 2.1 and 2.2 in special cases we will be inter-

ested in later. Consider '(p i1,v 
), I = 1,2, with

s I = 0, s2 = r, r > 1 an integer

= V = , 0 < v < 1

12 = v-r, v)2 =.

Then by Theorem 2. 1

or, v . 2G -)
= 'L2 2 v2  = 2' v2

where

A,= Pi' = P1 +2s,, i = 1,2.
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Further we have

0 = 1-)S2= (2-2 )s1

and for 0 < e < 1, Or an integer

s (1-e)s 1 + 6s 2 = Or

V = (1-e)1 +eV = 2s+[(1-0)p1 4+6 2 ] = s+

= -2s = v-s.

For {s} 0 1/2 and A.+2s = P+s = v * 1+2k, k = 0,...is]-1 we have

GI~, V) = pp+s

= (W0 (A1,I) Wr(, 2 ,V2 ))

= ( 1,))1V1 F(-2'V

= 0 (vP,), Or( 2-r, v))

and so

= (W(u,a'), W(v-r,v))E

for u < a = Er+v.

Assume now that 0 < v < 1, v * 1/2, r = 1, and 0 = '. Then we have

s = e, = 0 and hence

(O (V,V), W (a-l,v)) = W"(0,2u) = V(0,0) = A"(I).

We see that by Interpolating the weighted Sobolev spaces wOS(Mi" ), i =

1,2, we can obtain the standard fractional Sobolev spaces.
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2.3. Polynomial bases on I.

Let us create (eg. by Gramm Schmidt procedure) the orthogonal polynomial

basis in the space W (a,a). Denote this set of polynomials by {Pn (x;a)

where n is the degree of the polynomial.

Theorem 2.3. Let a < 1. Then P (x;a) are the Jacobi polynomials with the

index 0 = -a, i.e., Pn (x;a) = P (x;-R,-P) where P (x;-g,-P) is the

standard Jacobi polynomial.

The theorem follows immediately from the basis properties of Jacobi poly-

nomials, see eg. [Ib], [171. D

We will list the major properties of the Jacobi polynomials

(2.4a) P (-l,) = (-1)nP (,;a) = (_)n r(-a+n+l)
n n n!r(-a+ )

1

(2.4b) _ (1-x 2)-'P n(x;a)Pm (x;a)dx = 0 for n * m,

.-

(2.4c) (IX2 ( Xa)2dx 2a~ r2(-a__________ A 2(a)
-n n' (-2a+2n+l)r(-2a+n+l) n

(2.4d) P'(x;a) (-2a+n+l)P (xa-1)
n 2 n-l

(2.4e) (1-x2 )P"(x;a) -2(-a+l)xP'(x;a) +n(-2a+n+l)P (x;a) = 0n n n

or

((l-x2 ) -+p'(x;a))' +n(-2a+n+l)(1-x2)-CP (x;a) = 0.n n

We will also define the orthonormal Jacobi polynomials P (x;a)n

(2.5a) P (x;a) = P (x;a)A n(a)n n n

and get

8



An -o,+(1/2)
(2.5b) P (+;a) = (-l)-P (-I,a) = d C /nn n n

where d (a), n = 0,1,2.... is bounded from above and below by constants
n

depending only on a.

So far we assumed that a < 1. Let us address now the case a = 1.

Obviously a polynomial P(x) belongs to W(l,l) only when P(tl) = 0.

Theorem 2.4. Let a = 1. Then the orthogonal polynomial basis {P (x;l)} inn

W(1,l) is given by

(2.6) Pn(x;l) = n-1 f (t;O)dt, n ; 2n2 Pin-1

-1

and (2.4b), (2.4c) hold for n 2 2.

Proof. P n(t;O) is the Legendre polynomial. Because of the orthogonality of

Legendre polynomials P n(±1;l) = 0, n 2 2. Obviously Pn (x;1) belongs to

W O(,1). We have to show that

1

'1 (-2-P(') (x;l)dx = 0

n' m

for n,m 1, n m. For a = 0 we have from (2,4e)

P (x;O) = -((l-x2 )P'(x;O))' 1
n n (n+1)n

and hence

P (x;1) = I(1-x2 )P
n2n - 2n-i'(x;O)

Therefore

1 1

(1-x2 )-Pn(x;1)P (x;l)dx C(mn){ (l-x2 )P' (x;O)P'_ (x;O)dx
-1 -n
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SC1 (m, n) ( n-x-2) n-2 (x;-1) m-2 (x;- I )d x

-*1

- 0,

when using (2.4b,d) for m * n, nm 2 2. It is easy to check that (2.4c)

holds for a = 1 and n ; 2. 3

Using now (2.4c) and (2.4d) we see that the system iP (x;a)} is an
1n

orthogonal base in W 1 (a-l,) for a < 1 and of W1(a-1, ) for a = 1.

2.4. The approximation properties of the polynomials on I.

Let P(x;a), a 5 1, be the set of the orthonormal polynomials in

w O(,a). Assuming u e (aa), a -< 1, we can write

(2.7) u(x) = ZckPk(X;K)

k=O

and the series (2.7) converges in w O(M,).

Let us define

p

(2.8) Pu = ck k(x; c)

k=O

and

(2.9) Q = u - gu c cPk Cx;cE).

p+1

We have

lip (x;,M) 1 W (X-1 ,M- 1 A k 1 ol~ (;a 11W ((- 1, a-l)

-Ak (a)Ak..l(a-14C-2ax+k+l )IIPk...(x;Oc-1l '1 W(-11)

10



A1 '()Ak(a-1) 1(-2a+k+l) = Bk ()'k

with

0 < CI (a) < Bk () < C2 () < a

so that

P'(x; ) = Pkl(x;a-l)kDk(a)

where Dk () is bounded from above and below by the constant dependent only

on a.

Assume now that u E WI (a-I,c) then u' e W (0-Ia-1). For u given by

(2.7) we have now

(2.10) U' = Y C kD P (x;ia-l)
Z k k k-i
k=O

and hence

(2.11a) c1 (a)HU11
2  5 k2c 1lu- 2

1 U (cc- 1,a) k=0 Y 1 CX- 1, a)

Similarly for any integer r a: 0 and u e WrUa-r,a) given by (2.7) we have

W

(2.11b) C (,r)lul( 2  < Yc2(k2r+1) _ C (a,r)11u112
1 i(a-r=a) k 2 WrCa-r,a)

k=O

(2. 11b) leads immediately to

Theorem 2.5. Let r,s be integers and r a s a 0, u e Wr(a-r,a), a S 1.

Then

<QU1l :5 C(a, r,s)p- (r-s) llullwr _

So far we have assumed u e wr(a-r,a), s S r and we have

11



Pau E s(a-s,a). Let us now consider the case when u e (a-r,). Then
P

obviously In general Pau * O (a-la).
p

Lemma 2.6. Let n > 0 an integer, a < 1, and

[n/2 I
(2."12a)[] = 0,W (2k+1)P 2k(x;a)(2.12a) )l2n

k=O

[(n-1)/2]

(2.12b) 0]n = (2k+l)P 2k+1(X;i )(21b 2,n (x ")

k=O

Then 0[ ](x) have following properties:
i,n

a) "[a](x) is an even function and €2,n(x) is an odd function;
1,n n

b) 0[ ]x) I = 1,2 Is a polynomial of degree n;b) I,n '

c) (2.13a) c 1(a)-a[ (1) S C2 c(a)n-04(5 /2 ) I = 1,2
1 2 d (3/2)+r

d) (2.13b) dlln S 110i.n,,(a-ra)w:( _r.W )

r = 0,1, I = 1,2.

The above statements follow immediately from the basic properties of Jacobi

polynomials. 0

Let us now define

2 [a]0i. px)
p = p 2  (Pau) (1)+(1)i +1(pu)(-1))' .

i=1 ip j

and

2 "[a] W
P = P E ((u)(1)+(-I)i+1(P u)(-I)..[ 1(x)

p p 2 p p

Then obviously (Pu)(±l) = (C°au)(±l) = 0 and lu. °au E Wr(a-r.a), r =

p p p P

12



0,1. Further, let pu = u-eau and u = u- °*U.
p p p p

Theorem 2.7. Let 0 < a - 1, r = 0,1, s an integer, s ? r, a > I-s. Then

(2 14_10aU1 C(c, r, s)p- (s-r) Htull j =_,=

(2.14) lia)uii (=_r,)

Proof. Because of the definition of O(a-s,a) it is sufficient to prove

(2. 14) for u E C0 . Let s 2 1, 1 > > 1-s
0U

u = ZCkPk(X; 1

k=O

and

u(±1) = 0.

Hence

(2.15) (X u)(±l) i S IckIPk(±1;&)l

k=p+1

w w
:5 " :I - (I(/2) < C I {ck kS k-CX+ 1/2) -s

< C Z Ickik -C { cklk

k=p+1 k=p+1

-5 CH pl-

Therefore, using Theorem 2.5 and Lemma 2.6 we get

l{ < ulWr (ar, cc) P Wr ( c-r, a)
-a+ 1-s 1 (3/2)+r

ll l13ws( s ) -+ 5/2) p

13



Cp-(s-r) il

Hence, with r - 1,

+1

(1-x (a-) ]2 (1_2 )-a C u 21d :S~ Cp-(s-i)lll
p-1 p

and ( pu)(±l) = 0. Using Theorem 330 of 119] we get for a > 0

p

+1 +1f C -x 2 )- 1 ' (VOu) 2 dx S Ix2) a1)(, )]2
-1 -1

which shows that also

V ull1 :S <161 S Cp- (s-1 )l11UllP

S01(- 1, c) P a ,a+1o -s, a)

and (2.14) Is proven for r 1, s 2 1.

Next let u E WO(a,a) n C0 , a < 1. Then

p p

I(p;u)C(±1) <  IckII k(+;) < CZ Ickk<(2) < Cilullw 0( ' p00 +i

0 k=O U )

and hence

-ull I Qu aull 0 COUP I[p-z+1 1 3/2 1 ClullwO
I UWO(',a)  w W (a,W) w , p-a+(5/2 ) 

p  - C(l ,)

Because T u e W (0,x) for a = 1 the theorem also holds for a=- 1 whenp
= ,1. 0

p p

Theorem 2.7, together with Theorems 2.1 and 2.2, leads to a series of

important approximation results. As we have seen earlier

Arc,)= (€0°( ,a), (a-r,.))e

e

14



where

Or, s integer, {s} * 1/2

= a4 -er

+2s =P = s+ a 1 + 2k, k = 0. [ ]-I

Hence by Theorem 2.7 we get for 0 < e1 < 1, e 1/2, s a 1, an integer,

a -5 1, a > 1-s, (r = 1)

(2.16) 106 : Cp- (S-ej1U11

p (Pee' L91 )  0s(C-s, a)

where

Ve & +e 1
Me

and (2.16) holds (only) under the assumption that e = 1/2, s a 1 an

integer.

Let us remark that we can replace on the left hand side of (2.16) the

norm of e1(a-eC+ 1 ) by the norm of the space C2 (-e 1,a). Let now 0

e < 1, e * 1/2

S [se ] + e.

If [s] a 1 then we can use the interpolation on the right hand side and get

-(Se-e 1

11 c 11: Cp 11 U11
p091 ox9,a s

where we have excluded the case

15



a+Se = 1+2k, k = 0,..., [s1.]-.

If [s] = 0 then first by simultaneous Interpolation on both sides of (2.14)

we prove that

and then using (2.16) for s = 1 by Interpolating on the right hand side we

get

110 atU11 :5Cp-(e-e* ) 11U1
II 00lleI( a-e ,, ) 00 [a-e, =)

provided that > e 1 and e,e * 1/2. We have

Theorem 2.8. Let 0< a _ 1, 0 <s 1  1, s2 > sip si = [sI] +1/2, a +s

1+2k, k = 0,...,[s I ] -1. Then

(2.17) i u O Cua -< Cp-(s2-s O ) U1 ul oP U0(sz, (c )  2(-s2, a)

In addition we can replace the spaces s,(a-sia) by s(a-si,a+si) in

(2.17) and also s1(a-sl,a) by 0Sl(Rz) where 9 S x-s i , 7 < a and

2 as) by 72( ,v) with > a-s 2 and -7 a. o

(Because of direct use of (2.14) we do not exclude the case of si being

integers).

Select now a = s,, 0 < a I, a * 1/2. Then we get from (2.17)

(2.18a) 11 p UI 0U1:5 p ( 2 a 1 IUhl O 2(
P (0 ,0 ) I A(I) s t(-s2, )

Select now s1 < C, sI * 1/2 in (2.17):

(2. 18b) h1e0auI :5 11uh a UP 10CU11
I) O sX (0, 0) P OSI(.-s.,a)

16



-5 CP- (s2-sI) II ull OS2( Os2, Q)

For s > a we obviously cannot use the argument above. In (2.18) we

excluded the cases sI * [s] 1/2 and s I * I+2k, k = 1 ... ,. I) - I.

In the next section we will be especially interested in approximation in

the space HI/ M) which was excluded from our consideration. Hence we will

consider A(1/2)+cM() and get from (2.18a) the following.
1 1

Theorem 2.9. Let £ > 0, a = i+c, s > a. Then

(1 ull ( Cp-(s-(1/2)-c)
( 1/2)+cC I) Osl( )s, ()

for a+s t 1+2k, k = 0,...,[s]-1.
1 /2,i

On the left hand side of (2.19), we can replace R(I/2)+e(I) by H00 1 I)

and on the right hand side Os(a-s,a) by Os(1,7), Z a-s, 7 0 a.

Remark 2.1. Using Theorem 2.9 we have lost p in the estimate of the error
1 /2,

in H00 (I). This case can be studied separately. For example in [11] we

have shown that for s > 1/2

1/2 Cp -(s-(1/2)) (log p) 1/2Hull
1 H 1/2 I) S(O,O)

00

So far we have addressed the approximation properties of p. Let us now

analyze oa. We have
p

2 Wa [a])
= I (Wu) (1) + (-Vli'+(X) (Pa) i ')

p p 2 p r( [0p1(1)"

By (2.15), we have for s > -a +1 as before

I ( u)(-1)1 S < cp-+ -Sllull _

17



Remembering that (CU -Pu)(±l) = 0 using Theorem 2.1 and also Theorem
p P

330 of [19] we get for a > 0

aI ('u - P'u)lw 11 C11 (J'u - P6u) 1wl

p p @

P (a-la) P (a-,a)

Hence by Interpolation we get for s2 > si, 0 -< si S 1,

cc ;u - P;ull s(S scp-a+l-s2[ l+pa-(5/2)p(3/2)+Sl] Iluiks( se

la Cp - ( s 2 - s I) Blull OS2( Cs2, a

provided -a+1 S s1 and as before a+s 2 * 1+2k, k = 0... [s2]-i.

Let us summarize our results in

Theorem 2.10. Let 0 < a S 1, s1 2- 0, s I +a * 1 +2k, k = 0,.... [s]- 1,

I = 1,2. Then
1

1) for s2 > s1 , s1  [s ] +1

(2.20a) I 'ul ( Cp- (s 2 -s ) ull 2 €

P -s, ) c1-s2,(s)

If in addition -a+ 1 S sI then

(2.20b) (1 o, _s -S Cp(S2-S)Ilull
P2.0 (ai , ) 02 (-s2, )

2) For 0 S f S a S 1, s2 > , * 1/2

a~ ( S2-19)
(2 .2 0 c ) II p u A n < C p - I u ll • 2

If in addition -a+ 1S < s2, then
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(2.20d) II(Su2-0) 1 u

It was essential in (2.20c) (2.20d) that 13 5 a. The case a < has to be

studied separately. Let us mention first

Lemma 2.11. Let u be a polynomial of degree p and 0 5 a S. Then

11lull8( <5 Cp2(9-a) Hll (
H() H=(I )

For the proof, see eg. Lemma 2.4 of [18) or 11].

Now we can prove

Theorem 2.12. Let 0 < a S 1, , 1/2, 0 < s 2 = s2) + , 2

1+2k, k = 0,...,[s 2 ] - 1. Then

(2.21a) aI p: I S -1)+( -0B l

If in addition 1 :5 a < s2  then

( 2.21 b) II *°ui . 1 <  Cp - (s2-RS) + (9-a) HIulII
H (I) 2( 9-S2,9)

Proof. Using (2.20c) we get

u Cp( S2 - a)lHull) :1 C p 2 ( 0 -S 2 ,  ) '

O-9ul= -S cp - (s 2- a ) I1ul UP
S a I ) r 2( ( -$2, 13) '

and hence

110u -e-ul 1 Plu -gu 5 Cp c( S2-00 11 U
HCt=I) I ) I r) R-S2, 0

Using Lemma 2.11 we get
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$ Cp2 ( -a)-(s 2-a) lull

and hence

ll'u 11 ~C (S 2 -0) +(13a) 11U11

where we wrote on the left hand side P(I) instead of H"CI) because 9

1/2, eu E Al(I) and Ou- u is a polynomial vanishing at x = ±1. The
p p p

second part of the theorem follows easily, too. 0

Remark 2.2. Using Theorem 2.12, we see that for a > 1/2, s Z (1/2) +2c,

£ > 0, we have

ii0pully1/2 5: CCc)p-(s-(1/2) )+clHull

"H00

and the same estimate holds also for

In the next section we will especially be interested in the approximation

1/2In the space H/00  which case was excluded from our consideration. We

addressed this case only via the approximation in H(l/2)+c(1).

It is well known that {P k(x;1/2)} are Tchebyshev polynomials which can

be written in the form

P k(x;1/2) = cos(k arc cos x)

Pk(x;1/ 2 ) = q cos (k arc cos x).

We have shown in [11] that if

u = ZckPk(x; 1/2)

k=0

then

20



(2.22) Hull21 2  ZiCki 2k+ Ic 12,
H M) k=O

The space H 1/2(I) then has a norm which is equivalent to
00

1

(2.23) lull 21/2 = (-x2)- u 2dx + Iiul21/2(
H00  ) -1 H I)

This norm is equivalent to 11-11 Obviously 1/2u and yl/2u1/

al/ (0,1) p p U

H/2(I) if u e Hk(I), k > 1/2.0t

In [11], we have proven various properties of 1/2  for example
p

llop°/2ull _< Cp-(k-(1/2)) (log1/2p)Ilul k k > 1/2.
II 1hI/2 k p(o ~~uIk>12

H00 (I) H I)

Let us remark that in general

1 1 2 u 11 and 11 0 1/2U1
nd1/2 1) p ul 1/2

H00 ( H00 (I)

(and analogously in other cases) are not necessarily monotonic non-increasing

functions of p. Of course, if we define p1/2 as the projection onto the
p

set of polynomials of degree S p in the norm (2.23), then the monotonicity

would be guaranteed. If we neglect the first term in (2.23) and define 95/2

p

as a projection in this norm, then we get a monotone sequence but now

1 /2 H1/2
p 00

2.5. Numerical experimentation.

In the next section we will analyze the error of the finite element

method for two dimensional elliptic problems. This analysis leads naturally

to the measure of the error on I in the norm 1/2(1 respectively

H 1 I)
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H 1/2 Hence we will be interested here in the computational analysis of
HO0 ()

the error in the one-dimensional case, in the norm 1-11H 1/2 More precise-

ly, we will analyze I]u W T where

u Cx) 1 ZwkPk(x;O), 0 < w < 1.
2v/1-2wx+x k=O

We choose the functions u (x) since they are characteristic for applica-

tions. In practice, in the finite element method, the singularity is almost

always located at an end point of I. If w---l then u (x) becomes singu-

lar at x = -1. Hence the parameter w characterizes the smoothness of u

when the nonsmooth behavior occurs at an end point of I.

Let

r W) H / /2

P Hlu- 1/2u iW W H 1/2 ( )

where 1/2 is given by (2.22). Obviously raCw) M 1 and ra ()
H (I)

expresses the quality of the performance of P in 11-11 Figure 2.2
PH 1 2 (I)

shows ra (w) for w = 0.9, 0.95 and 0.98 and for the (extreme) cases
p

= 0,1. Table 2.1 gives the values r 0(0.9) and r (0.9). The values of
p p

r (0.95) and r P(0.98) are close together.p P
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.6 o _ ___

w=0.95 o -on o°

w=0.98 o-_

I \o o a\,
I ,.- - w =0.90

1.4 as .a : I + <' w 0.90 -----  -- °

- ~ ~ XI 'lx j2' --- a 0
1.3 .1-- w=0.95

I //

I x / o,So" 01 .2 0U = 0 9

1.I - o w = 0.95A,,O 0 w = 0.98

1.O I --- a= I

0 8 16 24 32
p-

0
Figure 2.2. Comparison of the performance of P0 and T1.P P

Table 2.1.

The values r (0.9), a = 0,1
p

p r 0 (09) r (0.9)

p p

1 1.0000 1.0000

2 1.0113 1.1611

3 1.0904 1.2741

4 1.1067 1.2450

5 1.1516 1.3218

10 1.2602 1.3281

15 1.3192 1.3854

20 1.3892 1.3720

25 1.4078 1.4038

30 1.4663 1.3909

35 1.4676 1.4130

40 1.5207 1.4018

50 1.5622 1.4089
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We see that r (a) decreases (in Our range) as a--i while r (c)
p p

icrerp large (with respect to-) the projection performsincreases. Forplag (wtrepc to - thprecin R efrm

o 0better than P , but for practical p (p < 1S, say), 90  seems to beP P

preferable to P . As we will see in the next section a similar effect is

present in the context of the finite element method.
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3. The Finite Element Method

3.1. The model problem.

Let Q be the domain as given in Section 2.1. Let A = {1,....M} and

. Denote now r D =u and rN = r-r D . We will call r D
, respect-

id)

ively rN the Dirichlet, respectively the Neumann boundary. Let H = H (Q)

and H. = {u e Hlu = 0 on r D } and B(uv) be a continuous symmetric

bilinear form on HxH. We will assume that for all u r H0 we have

B( 'U a -XIUJ 2. 'r > o.H0
B(u,u) 2

Further, let F be a continuous linear functional on H and g E H /2(F ),

g = grE H k(), i e V, k > 1/2.

Our model problem is now

Find u0 E H such that

U0 = g on F

(3.1)
and

B(Uov) = F(v), V v e H0

Our model problem has a unique solution.

3.2. The p-version of the finite element method.

q

Let U =U1fi' where C2,, i = 1,..., q are open curved quadrilaterals

i=1

or triangles called elements of the partition of . The vertices of £2. are
1

called the nodes of the partition. We will assume that the nodes which are

located on the boundary r of U coincide with the vertices A. of £2 asJ

shown in Figure 3.1.
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A5

A6  A42 A2

Am-I AM

Figure 3.1. The scheme of the partitioned domain.

By S = (-1,1)2  and T = giI-1 < g : 0, 0 < 71 < (g+1)V3; 0 _ < 1,

0 < n < (1-9)V3} (see Figure 3.2) we denote the standard square and standard

triangle respectively. Further, let P (T) be the set of all polynomials of
p

degree < p on T and P 2(S) the minimal set of polynomials on S consist-
p

Ing of all polynomials of degree < p and polynomials which are of deg,-ee

-< p on one side and are zero on the three others. For details see eg. [20].

The set P2(S) is the set of serendipity elements and in [21] is denoted by
p

Q'.
p

B3_____7B

;Z2

-_ _ _ __ _ _/ 
( ,0

B4  B B3  B

Figure 3.2. The scheme of S and T
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Assume now that the mappings F: (x[J] = x[j](C,, i = 1,2), j

1,...,q are smooth one-to-one mappings of S on f2 if P. is a (curved)

quadrilateral and T on £2 if U2 is a (curved) triangle. We can now

speak about vertices and sides of 2 in the obvious sense.

We will assume the following about the partition of £ and Lhe mappings

F5:

i) The intersection £2 A Q2 is either empty or is the single common

vertex of 02i and (2, or is the single entire side of C2i and £2
oY

ii) If r j = £2 I £2 is the common side of £2 and 2J, P e Fij, P =

F(P) =F(P) P I BkBk 1' P BB+1 (B is the vertex of S or T),

then d(PiB) = d(PJ, B +) where we denoted by d(PiEk) the Euclidean dis-

tance between Pi and Bk*

We also will identify the side rij with I = (-1,1) and the map Fi =
* S

F] = Fij of I onto Fij. Realizing that the sides of T and S have
S •

length = 2 the relation between Fi Fi, Fj is obvious.

Let now P (£) = {u e H1 (2)Iu(F 1 (xl,x 2 )) e P MT) if £. is a (curved)
-l 2

triangle, u(F (Xl,X 2 )) e P 2(S) if £i is a (curved) quadrilateral}. If

u E P p(£) then u(F (xl,x )) is a polynomial of degree p on every side of

T, respectively S. We will identify the sides of T, respectively S,

with I = (-1,1) in the obvious way.

Assume now that a mapping is given which maps Hk(I), k > 1/2, ontoP

P (I), (i.e., the set of polynomials of degree p on I), with ( u)(±l)
P P

u(±l) and * u = u for u e P (I). We note that for k > 1/2,
p p

Hk(I)c--.C(Y) and hence u(±1) is well defined.

The p-version of the finite element method for solving problem (3.1)

consists of finding u e P (£) such that

P P
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(3. 2a) Bu ,v) = F(v) V v c P () n HO,

(3.2b) u = A[i]g[i] on G

where

p 1pB

and FI  is the mapping of I on rI  Induced by the mapping F1.

The following theorem gives an error estimate for the p-version.

Theorem 3.1. Let the solution u0  of the problem (3.1) have the form

M n i

(3.3a) Uo = Ul+ c LcJ u L

J=1 i=1

(3.3b) u1  Hk(Q), k > 1,

[I] [I1]7[] 1(3.3c) Ilog rj (r) C(e()

where (r e ) are the polar coordinates with the origin at A a
J' j J, .j

a > 0, 7 > 0, x. (rj) is a C* cut-off function and 4'. is a Cj j - j J

function in eJ. Then

(3.4) lu O - u p 1 1 ( R  : C[P-(k-1)1,Ull[k(R p-41log pl s 2:1cli ll

0i,j

+ MI 4gi]- [i]g[] 1/2 1
S 1/H2 (r )

IGV00 1

where A - min(2&), s = where p = 2a , C is a constant indepen-
i,J

dent of u0  and p but dependent on k, p, s and on the partition of Q.

Proof. The proof of (3.4) is essentially the same as of Theorem 4.1 in [11].

2
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Let us mention that

11 g i][ig[i ll 1 "gr I ]  001p [1]* .1
p H.1/2_ )rp H /

00 t 0 

where gUi]( ) = g[i(Fi(C)), C E I, because by the assumption Fi( ) is

smooth.

Theorem 3.1 shows that the error of the finite element solution depends

on two terms. The first two terms in (3.4) represent the error of the best

approximation without the effect of imposing the Dirichlet boundary condition.

In the case when 2 = 0 or gi] = 0 only these terms are present in (3.4).

The last term shows the effect of the approximation of the Dirichlet condition

in the dependence on the projection * . We will call this term the con-P

straint term. We defined in Section 2.4 the projections P and P" for
p p

the set of functions u which satisfy the condition u(±l) = 0. In order to

choose = we define
p p

Pu = u *a{u'-U*)
p P

where u C ) = u(Fi( }), I E I, and u is the linear interpolant (in )

of u so that (u -u )(±}) = 0. The mapping Aol is defined similarly.
p

For a simplification of the notation we will write often P and Y'
p p

instead of P and A*'
p p

We can now directly combine Theorems 2.9, 2.10, 2.12, and Theorem 3.1 to

get the error estimate for the p-version of the finite element method when

using A & P or A For example, let 1 2 a > 1/2, s > a,
P p p p P

3". Then the constraint term has the estimate
p

(3.5) I~gLi] - a g( i l  S C(c)p(s-(/ 2 )-c) lg[i -g[ill1
( H 1/2 H0 (ri) a)
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where g and g were defined above. We assume that s = [s) + 1/2

and a+s * 1+2k, k = 0,....[s]-1. We obviously "lost" a power p in

(3.5) in comparison with the optimal estimate.

We have assumed that a > 1/2. If a < 1/2 then we have to apply

Theorem 2.12 and get on the right hand side of (3.5) the term

p -(s-(1/2)-c) ((1/2)--) 11g[I]* - /g)]"

3.3. Numerical experiments.

Let us consider the case of an L-shaped domain shown In Figure 3. 1. We

will partition this domain Into three squares as Indicated also in Figure 3.3.

au au

an
T5 r

au

a- -n
r e

A5  r4  A

an
T6 re

U

u FOR NEUMANN

au r 7  A7  an PROBLEM

an

Figure 3.3. The L-shaped domain.

Let us consider the model problem

(3.6a) Au = 0,

(3.6b) u = g on r1 and r8  (i.e., 1,8 e 2)),

(3.6c)a = h on r, 2 S 7.
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We will assume that g and h are such that the exact solution u0  is

A

(3.7) u0 = r sin Ae

where (r,8) are the polar coordinates with the origin at the vertex A1

(see Figure 3.1). Note that u0 = 0 on r . This problem will be called the
V

Dirichlet problem. In addition we will consider the Neumann problem when

= {i}. The problem now Is formulated in the form (3.1) with

2
B(u' x = au dx

a= 8xi ax .

F(v) = I hvdx i e A- D.

Ii

The constraint term Is not present in the Neumann problem. It is present on

1 in the case of the Dirichlet problem

We will now use the projection Aoa which is advantageous in practice
p

(although in some cases some assumptions in our theorems are violated).

The Neumann problem has no constraint term and hence the error for the

Dirichlet problem has to be larger. The difference indicates the influence

of the constraint term (and of *a) on the accuracy of the solution. In
p

Tables 3.1 - 3.5 we show the relative error u0 -uI H 1 ( for

various a and A.

We see that in the case A = 1.6 and A = 0.6 the ratio of the error of

the Neumann problem and the Dirichlet problem is a reasonable. one for all o

and nearly independent of p. In [7] we have proven that in this case, when

g [8  e H (r ), the rate for the Neumann and Dirichlet problem is the optimal

one when P (or A*') was used. We cannot theoretically explain why the
p p
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error decreases with a--40 for a < 1/2. Very likely it relates to the used

range p 5 8 and analogous effects we have seen in Figure 2.2.

In the case A = 0.15 when g[8 H (r8 ) we see the divergence when

*° 1  is used, as expected, but once more we cannot explain why 1/4 gives
p p

best results. We see that 0 performs slightly worse than *°I/ 4  (but
p p

still better than 1/2
P

In the case X = 0.05, the use of *00 leads to the divergence.
p

A natural question arises. What a should be used in practice? The

experiment suggests the choices a 5 1/2. a = 1/2 should be preferred for

theoretical reasons but a = 0 usually gives the best results in our experi-

ments (these and others) and never gives a bad result. We note that for A

0.05, the p-version gives unacceptable results even for the Neumann problem

and hence the h-p version has to be used.

If the h-p version (or p-version with strongly refined meshes) is

used, then the difference between various projection operators is not too

important. We will illustrate one such choice of operator when Dirichlet con-

ditions are imposed on the entire boundary. The solution is u = r1 / 3 sin 0/3

(case A) and u = r2 / 3 cos 28/3 (case B). The projection V 1  is used.
p

Figure 3.4 (case A) and 3.5 (case B) show the relative error for different p

and the meshes which are strongly refined. They have n layers and for n

1, the mesh shown in Figure 3.2. Theoretically (see [91, [101), the h-p

version converges exponentially as e and hence Figures 3.4 and 3.5 are

plotted in the log x N1/ 3  scale. We see also in case A that the h-p

version with n = p converges in fact as e
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0 2 4 6 8 t
"5.

2
DIIHE CASE.

_h 7
*
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0-O-- n~I

6 7z X---x n=3
A --- & n=4 _

w
:r 0--0 n=5

0.01 6

-hpVERSION

-DIRICHLET B.C. 7

cru r cos 28/3a

0.0011 1 1
0 2 4 6 8 10 12

- N1 3 
-0.

NUMBER OF DEGREES OF FREEDOM

Figure 3.5. The error of the p and h-p version for u =r 23cos 20/3.
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Table 3. 1. Relative error for A = 1.6

P o0 o 1 /4  *o1/ 2  r3/4  o NBC

p p p p p

1 2.6001 E-1 2.6001 E-2 2.6001 E-I 2.6001 E-1 2.6001 E-1 2.5761 E-I

2 3.6361 E-2 3.6297 E-2 3.6232 E-2 3.6171 E-2 3.6127 E-2 3.1326 E-2

3 3.0482 E-2 3. 0422 E-2 3. 0367 E-2 3. 0331 E-2 3.0340 E-2 2.3647 E-2

4 1.5320 E-2 1.5361 E-2 1.5426 E-2 1.5529 E-2 1.5699 E-2 1.2535 E-2
5 8.2123 E-3 8.2512 E-3 8.3240 E-3 8.4285 E-3 8.5922 E-3 7.1002 E-3

6 4.8521 E-3 4.8886 E-3 4.9435 E-3 5.0260 E-3 5.1533 E-3 4.2937 E-3
7 3.0914 E-3 3.1174 E-3 3.1571 E-3 3.2182 E-3 3.3137 E-3 2.7834 E-3
8 2.0821 E-3 2.1029 E-3 2.1338 E-3 2.1809 E-3 2.2546 E-3 1.8983 E-3

Table 3.2. Relative error for A = 0.6

P 0  po 1 /4  *o1 /2  r3/4  yo NBC

p p p p p

1 3.0707 E-1 3.0707 E-1 3.0707 E-1 3.0707 E-1 3.0707 E-1 2.6397 E-1

2 2.1588 E-1 2.1671 E-1 2.1795 E-1 2.2008 E-1 2.2436 E-1 1.7145 E-1

3 2.1377 E-1 2.1513 E-1 2.1720 E-1 2.2267 E-1 2.2781 E-1 1.5878 E-1

4 1.5851 E-1 1.5991 E-1 1.6203 E-1 1.6563 E-1 1.7289 E-1 1.2927 E-1

5 1.2400 E-I 1.2528 E-1 1.2726 E-1 1.3065 E-1 1.3763 E-1 1.0516 E-1

6 1.0116 E-1 1.0233 E-1 1.0414 E-1 1.0725 E-1 1.1378 E-1 8.7797 E-2
7 8.5071 E-2 8.6129 E-2 8.7780 E-2 9.0682 E-2 9.6911 E-2 7.4923 E-2

8 7.3162 E-2 7.4134 E-2 7.5652 E-2 7.8361 E-2 8.4305 E-2 6.5076 E-2
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Table 3.3. Relative error for A = 0.3333

p 0  r1/4  r1/2  y3/ 4  r NBC
p p p p p

1 7.1888 E-1 7.1888 E-1 7.1888 E-1 7.1888 E-1 7.1888 E-1 5.7124 E-I

2 5.8300 E-1 5.8538 E-1 5.9181 E-1 6.1187 E-1 7.0125 E-1 4.7273 E-1

3 5.8462 E-1 5.9263 E-1 6.1026 E-1 6.5729 E-1 8.3462 E-1 4.5779 E-1

4 4.9954 E-1 5.1145 E-1 5.3729 E-1 6.0323 E-1 8.3153 E-1 4.1310 E-1

5 4.4324 E-1 4.5536 E-1 4. 8347 E-1 5.5783 E-1 8. 1688 E-1 3.6981 E-l

6 3.9661 E-1 4. 0957 E-1 4. 4009 E-1 5.2086 E-1 8.0127 E-1 3.3549 E-1

7 3.6438 E-1 3.7673 E-1 4.0747 E-1 4.9119 E-1 7.8886 E-1 3.3079 E-1

8 3.3501 E-1 3. 4756 E-1 3. 7924 E-1 4. 6603 E-1 7.8025 E-1 2.8517 E-1

Table 3.4. Relative error for A = 0.15

0  pol o//4  r 1 /2  y 3 /4  yol NBC
p p p p p

1 1.0123 E-0 1.0123 E-0 1.0123 E-0 1.0123 E-0 1.0123 E-0 8.5288 E-1

2 9.1644 E-1 9.1240 E-1 9.0754 E-1 9.0775 E-1 1.0672 E-0 7.8644 E-1

3 9.0381 E-1 9. 0073 E-1 9. 0034 E-1 9. 2422 E-1 1.3136 E-0 7.7035 E-1

4 8.4599 E-1 8. 4380 E-1 8. 4864 E-1 8.9877 E-1 1.4699 E-0 7.3960 E-1

5 8.1341 E-1 8.1065 E-1 8.1748 E-1 8.8487 E-1 1.5893 E-0 7.0663 E-1

6 7.7966 E-1 7.7722 E-1 7.8714 E-1 8.7191 E-1 1.6836 E-0 6.7779 E-1

7 7.5917 E-1 7.5626 E-1 7.6744 E-1 8.6455 E-1 1.7626 E-0 6.5296 E-1

8 7.3550 E-1 7.3276 E-1 7.4608 E-1 8.5618 E-1 1 8308 E-0 6.3139 E-1
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Table 3.5. Relative error for A = 0.05

p 00
p NBC

1 1.0306 E-0 9.6485 E-1

2' 1.0851 E-0 9.4059 E-I

3 1.2706 E-0 9.3285 E-1

4 1.4422 E-0 9.2138 E-I

5 1.5993 E-0 9.0854 E-1

6 1.7407 E-0 8.9661 E-I

7 1.8707 E-0 8.8591 E-1

8 1.9920 E-0 8. 7630 E-1
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